U-M’s Hurricane-tracking Satellite System Gets NASA $21M Renewal

NASA is continuing its investment – to the tune of $21 million – in the University of Michigan-led Cyclone Global Navigation Satellite System (CYGNSS) research project.
604
Cyclone Global Navigation Satellite System
NASA is investing an additional $21 million in the University of Michigan-led Cyclone Global Navigation Satellite System (CYGNSS) research project. // Image courtesy of CYGNSS

NASA is continuing its investment – to the tune of $21 million – in the University of Michigan-led Cyclone Global Navigation Satellite System (CYGNSS) research project.

The system is designed to improve hurricane forecasting. It also is demonstrating a knack for helping solve problems on land.

Launched in late 2016, the eight-microsatellite system analyzes the interaction of water and air near the heart of storm systems to bolster predictions on the severity of storms.

Following the Earth Science Division 2020 Senior Review, NASA announced it is extending the CYGNSS mission through Sept. 30, 2023. The $21 million will go toward mission operations and the project’s science team.

“Our ability to forecast the strengthening of hurricanes has been improved by CYGNSS measurements of their inner core winds, which allow us to track the transfer of energy from the warm ocean water into the atmosphere in the form of latent heat flux,” says Christopher Ruf, a professor of climate space science at the Ann Arbor university’s Department of Climate and Space Sciences and Engineering and CYGNSS principal investigator.

CYGNSS microsatellites, designed and operated by the Southwest Research Institute, take in direct and reflected signals from GPS satellites orbiting Earth. Their configuration allows a succession of satellites to pass over the same region of the tropics every 12 minutes, producing more accurate measurements of wind speeds over the oceans.

Currently, CYGNSS data is not being used directly in operational forecasting by the National Oceanic Atmospheric Administration. As a relatively new addition to the forecasting arsenal, satellite data has been used in reanalysis forecasting — revisiting old hurricane forecasts with new CYGNSS data to see how predictions could have been improved.

“Ocean surface wind measurements are fundamental for operational forecasting of marine weather, including tropical cyclones,” says Mark DeMaria, chief of the Technology and Science Branch at NOAA’s National Hurricane Center. “The CYGNSS wind retrievals show promise to improve National Hurricane Center and Ocean Prediction Center forecasts of hazardous tropical and marine weather if the science demonstrations carry over to an operational environment.”

Since reaching orbit, CYGNSS has beamed back a data utilized in hundreds of research papers and projects by scientists around the globe, including the World Health Organization’s utilized soil moisture estimates for eastern Africa derived from CYGNSS data to better understand the development of locust storms that threaten multiple nations’ food supplies.

Adding CYGNSS data to NOAA’s test hurricane modeler improved track, intensity, and structure forecasts for hurricanes Harvey and Irma, demonstrating its potential to improve forecasts of future hurricanes.

It has provided imaging of coastal flooding after hurricanes make landfall, which can help first responders find impacted regions, help scientists better understand how disasters evolve, and creates a reference system of places that may be affected again in the future.

CYGNSS data has establishing river flow rates and widths following extreme weather events.

“Over land, we can do a number of things — the main one being measuring flood inundation after a hurricane makes landfall,” Ruf says. “We’re able to get high-resolution maps of where the water is. You can do the same for other places like floodplains or where rivers overflow their banks.

“Newer investigations using measurements over land of surface hydrology and inland water extent are beginning to show great promise and this mission extension will allow us to realize that promise.”