Mission to Mars: U-M Digital Simulations Will Reduce Landing Guesswork

Researchers at the University of Michigan in Ann Arbor are using high-powered computer simulations to update interplanetary spacecraft landing data for NASA.
spacecraft descent illustration
A simulation of a spacecraft descent and plume-induced surface cratering. // Image courtesy of CFD Research Corp.

Researchers at the University of Michigan in Ann Arbor are using high-powered computer simulations to update interplanetary spacecraft landing data for NASA.

The aerospace industry’s current understanding of how exhaust plumes fluidize surface soil, form craters, and buffet the lander with coarse, abrasive particles is based on data that is in some cases 40 to 50 years old. That same data is loaded on the Perseverance rover, which lifted off July 30 from Cape Canaveral and currently is on its way to Mars.

“Much of the available data used in the design stage, including for the (current) Mars 2020 mission, is based on Apollo-era data,” says Jesse Capecelatro, an assistant professor of mechanical engineering at U-M. “Landing-relevant data is very difficult to generate because you can’t just run an experiment on Earth. Existing mathematical models break down in these more extreme conditions when particles approach supersonic speeds. Our group is developing new numerical algorithms that enable such simulations.”

Capecelatro leads a team developing physics-based models that can be incorporated into codes used by NASA to help predict what will happen when a spacecraft attempts to land millions of miles from home.

He specializes in when he calls “messy turbulent flows” and simulating the behavior of fluids made of two phases of matter — in this case solid particles suspended in a gas.

The Mars 2020 Perseverance is scheduled to land on Feb. 18, 2021. Capecelatro will analyze its descent data and incorporate it into his models.

Apollo-era landings showed that disturbed surface material can spread up to half a mile, posing hazards not only to the lander itself but for neighboring vehicles or landing sites. Despite advances made in the years since, landings remain fraught with potential hazards.

Eight years ago, a wind sensor on the Curiosity rover was damaged during its Mars landing and in April 2019, Israel’s SpaceIL lander, Beresheet, was minutes from touchdown on the moon when communications failed and the craft crashed.

As NASA moves toward new crewed missions under the Artemis Program, this work becomes more vital. Not only do humans onboard raise the stakes, they mean larger payloads and, subsequently, stronger exhaust plumes interacting with the planet’s surface.

Much of the simulation work at U-M is performed on Great Lakes, the university’s newest high-performance computing cluster. It allows the research team to partition the problem over hundreds, and even thousands, of processors simultaneously. Therefore, each processor does a portion of the work and only needs to store a small fraction of the total data.

But even the most powerful computers in the world right now can only resolve so many of these interactions. To go deeper, Capecelatro uses models — best guesses based on all available data — to push the simulations further. The goal is to provide a framework NASA can use to better predict how different designs will impact the ground and the landing and adjust.

“The largest supercomputers today can maybe handle a thousand particles where we directly capture all of the flow physics,” Capecelatro says. “So, doing a full, square-kilometer landing site is out of the question. Our simulations provide the fundamental insight on the flow physics needed to develop improved mathematical models that their codes need to simulate a full-scale landing event.”

Facebook Comments