Ford and U-M Fight Microbes in New Vehicles


DEARBORN — In cars and trucks, microscopic organisms including mold and mildew can quickly take hold and spread over a variety of surfaces leading to discoloration, and even unpleasant odors.

“Vehicle cabins are exposed to a wide variety of environmental conditions that can make them microbial breeding grounds,” said Cindy Peters, Ford Motor Company technical expert. “Based on growing consumer desire for health and wellness solutions, we decided to take a look at the interiors in Ford vehicles with the goal of creating a cleaner, more aesthetically pleasing environment for our customers.” 

Many consumers are sensitive to chemicals or don’t like the artificial scents of many air fresheners, so a solution that proactively reduces the source of odors for the life of the vehicle might be appreciated. 

Engineers from the Ford Research and Innovation Center in Dearborn have been collaborating with a team from the University of Michigan led by microbial ecologist Dr. Blaise Boles to evaluate the concentration and growth of microbes in vehicles.

Peters and her colleagues collected samples from a variety of company and employee-owned vehicles. The samples were then cultured and analyzed at a U-M laboratory in Ann Arbor. The team took swabs from 10 locations in the vehicle interior including the steering wheel, radio buttons, door handles, window switches and gearshift knobs. The U-M researchers found significant bacteria growth at most of the test locations with the highest concentrations on the steering wheel and the area around the cup holders.

“The long-term goal is to define the microbial ecology of the car interior and to optimize the design of car interiors to promote comfort and environmental sustainability,” said Boles, assistant professor in the U-M Department of Molecular, Cellular and Developmental Biology.

The team focused their attention on three commonly used and EPA-approved antimicrobial additives. Panels painted with four different formulations were then evaluated back at the U-M lab to assess the growth rates of microorganisms.

Parts coated with paint infused with the silver-ion additive contained lower microbe growth than the control parts with the current production paint. Agion, based on elemental ions, works by starving, sterilizing and suffocating the microbes to prevent them from growing and reproducing. 

Even after simulating many years of use, the microbe growth of the Agion-infused coating changed very little. The additive also had little impact on the gloss and color change of the surfaces over the test period. Parts with the antimicrobial-treated coating are now undergoing real-world testing in a number of Ford development vehicles, and the coating is being evaluated for potential use in future Ford vehicle programs.

“We can’t control everything that contributes to stains and odors in our cars and trucks,” said Peters. “But we’re doing our part to maintain a pleasant cabin environment for our customers over the long haul.”