Bookmark and Share Email this page Email Print this page Print

Isotope Inc.

A research group at the University of Michigan is making it easier to detect nuclear materials — and possibly to pinpoint cancer cells and aid in the search for water on distant planets.

Isotope Inc.
Zhong He and his team have developed a portable gamma ray detector, called Polaris, which sits atop a laboratory cart at U-M.
Photo by Erik Howard

(page 1 of 2)

 When China native Zhong He arrived at the University of Michigan in Ann Arbor 16 years ago, he began work on a portable gamma ray device that could verify whether Russia, for example, had dismantled nuclear missiles as part of a weapons reduction treaty.


The assignment, initially funded by the Department of Energy, became more urgent after 9/11. Responding to multiple terrorist threats, the government tasked He and his team of Ph.D. graduate students with developing advanced nuclear detectors to determine the precise location and identity of nuclear materials that may be smuggled between countries or used to produce dirty bombs.


The research effort was especially challenging because conventional gamma ray detection devices (using high-purity germanium) are bulky and must be cooled to -200 degrees Celsius (-328 degrees Fahrenheit), often using liquid nitrogen.


“All nuclear materials emit gamma rays — as do many building materials like masonry and cinder blocks, due to minute amounts of radioactive material in the ground,” says He, professor of nuclear engineering and radiological sciences at U-M’s College of Engineering.
“We needed to find a way to detect very accurately, for example, the unique gamma-ray spectrum of uranium-235 or plutonium-239, which are unique signatures of special nuclear materials for weapons use.”


Due to technical advances — He says a good analogy is comparing the power of today’s cell phones with desktop computers from 10 years ago — the U-M team just delivered its first gamma-ray detection prototype to the Defense Department.


Called Polaris, U-M’s semiconductor-based gamma-ray imaging detector is roughly one square foot in size. The metal-encased device includes two optical imaging cameras, 18 advanced gamma-ray sensors, a small array of electronic circuitry, and two miniature cooling fans.

Tell Us Your Thoughts

Comments are moderated for appropriate language.

Add your comment:

Read More Articles


This site is a member of the City & Regional Magazine Association Online Network